Googles Machine-Learning-System TensorFlow jetzt verteilt einsetzbar

Die Trainingssoftware für Maschinenlernen lässt sich in der jüngsten Version 0.8 auf "hunderten Maschinen" parallel betreiben, um die Rechenzeit im Idealfall von Wochen auf Stunden zu verkürzen. Zudem können Entwickler TensorFlow neuerdings auf eigener Hardware laufen lassen.

Google hat Version 0.8 seines Machine-Learning-Systems TensorFlow verfügbar gemacht. Die Trainingssoftware für Maschinenlernen kann ab sofort parallel auf „hunderten Maschinen“ eingesetzt werden, wodurch sich die benötigte Rechenzeit im Idealfall von Wochen auf Stunden verringern soll. Außerdem können Entwickler das jüngste Release erstmals auch auf eigener Hardware laufen lassen.

TensorFlow (Bild: Google)Die Möglichkeit verteilten Rechnens war laut Google eine der von den Nutzern am häufigsten geforderten Verbesserungen und verspricht einen großen Schritt nach vorne. Da für Maschinenlernen meist riesige Datenmengen verarbeitet werden müssen, um Muster und die dahinter stehenden Regeln zu erkennen, bietet es sich an, diese Prozesse auf mehreren vernetzten Rechnern statt auf einem einzelnen laufen zu lassen. Das geht nicht nur schneller, sondern macht die Entwicklung zugleich günstiger.

Obwohl erst seit November 2015 unter der Apache-2.0-Lizenz quelloffen verfügbar, ist TensorFlow im Bereich Maschinenlernen bereits die am häufigsten heruntergeladene Software bei GitHub und das Projekt mit den meisten Forks im vergangenen Jahr. Die Resonanz der Entwickler-Community ist also hervorragend, weshalb es nicht überrascht, dass Google Schritte unternimmt, um noch mehr in die Breite gehen zu können.

WEBINAR

Webinaraufzeichnung: Server-Modernisierung als Chance für KMUs

Dank der kontinuierlichen Weiterentwicklung von Intel® Xeon® Prozessoren sind aktuelle Server deutlich leistungsfähiger als ihre Vorgängermodelle. Unternehmen können durch die Investition in neue Server Kosten senken sowie Leistung und Effizienz steigern.

Erst im Februar hatte der Internetkonzern ebenfalls auf GitHub mit TensorFlow Serving ein Open-Source-Projekt gestartet, das es Entwicklern erleichtern soll, Maschinenlernen in ihre Anwendungen zu integrieren. Die Software unter der Apache-2.0-Lizenz ist in C++ geschrieben. Auf einem Server mit 16-Kern-Xeon-Prozessor lassen sich laut Google damit pro Sekunde 100.000 Queries abarbeiten. TensorFlow Serving soll es Entwicklern ermöglichen, die mit TensorFlow erstellten Modelle in der Praxis anwendbar zu machen und anzupassen. Dazu finden sich ebenfalls auf GitHub Tutorials. TensorFlow Serving wird sich Google zufolge künftig auch auf andere Bibliotheken für Maschinenlernen anpassen lassen und die Möglichkeit bieten, mehrere Algorithmen und Datenmodelle auszuprobieren, ohne die einmal bewährte Architektur und funktionierenden APIs zu verändern.

Der verteilte Einsatz von TensorFlow verkürzt die benötigte Rechenzeit deutlich (Grafik: Google).Der verteilte Einsatz von TensorFlow verkürzt die benötigte Rechenzeit deutlich (Grafik: Google).

Zu interessanten Projekten, für die bereits auf TensorFlow zurückgegriffen wurde, gehört etwa eine Software, die Kindern dabei helfen soll, chinesische Schriftzeichen korrekt zu schreiben. Dazu wurde sie zunächst darauf trainiert, korrekt aussehende, aber nicht existierende Schriftzeichen zu „erfinden“. Ein weiteres, auf den ersten Blick weniger praxisrelevantes, aber gut beschriebenes Projekt ist der Versuch, mit Hilfe von TensorFlow einer Maschine das Spiel Pong beizubringen.

Ende Januar hatte Microsoft das Deep-Learning-Toolkit CNTK bei GitHub unter der MIT-Open-Source-Lizenz zur Verfügung gestellt. Es wurde seitdem immerhin über 5000-mal heruntergeladen und richtet sich in erster Linie an Entwickler, die an Lernmodellen für Sprach- und Bilderkennung arbeiten. CNTK ist schon seit April 2015 Open Source, stand aber zuvor nur auf Microsofts Repository CodePlex bereit. Damit waren Nutzer an Microsofts Academic License gebunden. Alternativ steht Interessenten bei Microsoft das Azure Machine Learning für diverse Zwecke und in mehreren Ausprägungen zur Verfügung. Ein anschauliches Beispiel dafür, was mit den Microsoft-Werkzeugen möglich ist, stellt die Site How-old.net dar, die anhand von Bildern das Alter von Personen schätzt.

[mit Material von Peter Marwan, silicon.de]

Neueste Kommentare 

Noch keine Kommentare zu Googles Machine-Learning-System TensorFlow jetzt verteilt einsetzbar

Kommentar hinzufügen

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *