Data-Mining: Verborgene Schätze in Unternehmensdaten

Das Auffinden verborgener Muster und Trends in Unmengen von Datenbeständen erfordert enorme Rechenleistungen. Die Anstrengungen werden jedoch meist mit gänzlich neuen und oft gewinnbringenden Erkenntnissen belohnt.

Der explosionsartige Anstieg der Unternehmensdaten hat den Datenmanagern, deren Aufgabe es ist, die ständig wachsenden Informationsmengen sinnvoll zu verwalten, fast pausenloses Kopfzerbrechen bereitet. Angesichts des Drucks, erkennbare Werte aus diesen Daten zu gewinnen, haben viele von ihnen sich komplexen Data-Mining-Systemen zugewandt, die auf der Suche nach zuvor unbekannten Beziehungen riesige Informationsmengen mithilfe von übernatürlich intelligenten mathematischen Algorithmen durchsieben.

Data-Mining wurde bisher zwar als Möglichkeit zur Wertmaximierung jeder Art von Unternehmensdaten verkauft, seine Stammkunden beschränken sich jedoch bis jetzt größtenteils auf die höhere Wirtschaftsebene – Finanzdienstleister, große Einzelhandelsunternehmen, Telekommunikationsunternehmen und Regierungen bzw. Verwaltungen.

Finanzämter verwenden es zur Suche nach Diskrepanzen in den eingereichten Steuerformularen. Banken verwenden es zur Erkennung von Kreditkartenbetrug und für die Profilerstellung von Kunden, die mit gewisser Wahrscheinlichkeit Bankrott erklären oder ihre Kreditverbindlichkeiten nicht erfüllen könnten. Strafverfolgungsbehörden verwenden es zur Aufdeckung von Geldwäsche. Versicherungsunternehmen verwenden es zur Erkennung betrügerischer Ansprüche. Und Einzelhändler analysieren mithilfe von Data-Mining Verkaufstrends, um das Verbraucherverhalten systematisch zu beobachten und die Warenvorräte in den Lagern entsprechend anzupassen.

In einem sehr bekannt gewordenen Beispiel für die Macht dieser Technologie setzte die Australische Börsenaufsichtsbehörde (Securities and Investment Commission) NetMap ein, das Querverweise der Beziehungen zwischen den verschiedenen Daten in einem bestimmten Fall herstellt, und konnte damit 1996 einen von Simon Hannes (damals leitender Angestellter der Macquarie Bank) durchgeführten Insider-Handel aufdecken.

Die Technologie hat sogar beim italienischen Fußballclub AC Mailand einen Platz gefunden, der den CleverPath Predictive Analysis Server von Computer Associates einsetzt, um physiologische, orthopädische und mechanische Daten zu analysieren, die aus einer Vielzahl von Quellen gewonnen werden. Das System durchsucht die Daten, um Faktoren zu identifizieren, die in der Vergangenheit zur Verletzung eines Spielers geführt haben könnten, und setzt anschließend CAs Technologie ,Neugents‘ ein, mit deren Hilfe aktuelle Daten überwacht und Spezialisten beim Auftreten einer ähnlichen Situation gewarnt werden, die potenziell zur Verletzung eines Spielers führen könnte.

Themenseiten: IT-Business, Strategien, Technologien

Fanden Sie diesen Artikel nützlich?
Content Loading ...
Whitepaper

ZDNet für mobile Geräte
ZDNet-App für Android herunterladen Lesen Sie ZDNet-Artikel in Google Currents ZDNet-App für iOS

Artikel empfehlen:

Neueste Kommentare 

3 Kommentare zu Data-Mining: Verborgene Schätze in Unternehmensdaten

Kommentar hinzufügen
  • Am 25. August 2003 um 20:19 von Ralf Dietrich

    Ausführlich – aber bitte weiteren Aspekt bedenken!
    Vielen Dank für den langen Artikel. Es hat sich gelohnt!
    Ich möchte aber ergänzen, dass Data Mining Modelle (Algorytmen) ein Training für die Datenbasis benötigen, um Vorhersagen treffen zu können. Daraus folgt, das sie mit der Zeit immer besser werden können, wenn man die Voraussagen mit den Ergebnissen konfrontiert.
    Das Training (mit verifizierten Daten) ist wesentlich für die Qualität der Aussagen der Mining Modelle.

  • Am 8. September 2003 um 9:59 von Dieter Gennburg

    Data-Mining mit R
    Die freie Statistikprogrammiersprache R dazu verwenden.

  • Am 11. Februar 2011 um 19:11 von Frank Xavier

    Open Source Data Mining mit RapidMiner und RapidAnalytics
    Als kostenlose erhältliche Open-Source-Lösungen für den Unternehmenseinsatz empfehle ich:

    * RapidMiner für Desktop oder Notebook: http://www.RapidMiner.com/

    * RapidAnalytics als Server-Lösung: http://www.rapid-i.com/

    Wahlweise kann man in RapidMiner und RapidAnalytics über Erweiterung (Extensions) die Open-Source-Systeme Weka und R einbinden. Es geht aber auch ohne, denn RapidMiner und RapidAnalytics bieten bereits von hause aus sehr viele maschinelle Lernverfahren und statistische Modellierungsverfahren.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *